On the Mn–C Short-Range Ordering in a High-Strength High-Ductility Steel: Small Angle Neutron Scattering and Ab Initio Investigation

نویسندگان

  • Wenwen Song
  • Dimitri Bogdanovski
  • Ahmet Bahadir Yildiz
  • Judith E. Houston
  • Richard Dronskowski
  • Wolfgang Bleck
چکیده

The formation of Mn–C short-range ordering (SRO) has a great influence on the mechanical properties of high-Mn steels. In the present work, the formation of Mn–C SRO during recrystallization of an X60Mn18 steel was investigated by means of a combined study employing small angle neutron scattering (SANS) and ab initio ground-state energy calculations based on density-functional theory. The SANS measurements prove the presence of Mn–C SRO in the recrystallization annealed X60Mn18 steel and indicate the evolution of the SRO during recrystallization. The results show that with the increase in annealing time, the mean size of the Mn–C SRO decreases, whereas the number density increases. The ab initio calculations well describe the energetically favored condition of Mn–C SRO and provide the theoretical explanation of the clustering formation and evolution in the X60Mn18 steel. The stress-strain curve of the X60Mn18 steel exhibits a high strain-hardening rate and the plastic deformation is characterized with a series of serrations during a uniaxial tensile test. In the end, the correlation between Mn–C SRO and the serrated flow of high-Mn steels is further discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mechanical Behavior of Hybrid Fiber Reinforced High Strength Concrete with Graded Fibers

Brittleness, which was the inherent weakness in High Strength Concrete (HSC), can be avoided by reinforcing the concrete with discontinuous fibers. Reinforcing HSC with more than one fiber is advantageous in an overall improvement of the mechanical performance of the composite. In this experimental study, Hybrid Fiber Reinforced High Strength Concrete (HyFR-HSC) mixes were formed by blending si...

متن کامل

Ab Initio Predicted Alloying Effects on the Elastic Properties of AlxHf1−xNbTaTiZr High Entropy Alloys

Using ab initio alloy theory, we investigate the equilibrium bulk properties and elastic mechanics of the single bcc solid-solution AlxHf1−xNbTaTiZr (x = 0–0.7, 1.0) high entropy alloys. Ab initio predicted equilibrium volume is consistent with the available experiment. We make a detailed investigation of the alloying effect of Al and Hf on the equilibrium volume, elastic constants and polycrys...

متن کامل

تحلیل پراکندگی پرتوهای X تشدید یافته در لبه K ی Mn در Nd./5Sr./5MnO3

 Studies of phenomena such as charge, orbital and spin ordering in manganite has attracted much interest in recent years. These studies have been possible from an experimental point of view by the third generation synchrotron sources. X-ray with high flux density, tunable energy and polarization can be produced in synchrotron sources. Experiments have shown a resonant in peak intensity originat...

متن کامل

HIGH TEMPERATURE TENSILE PROPERTIES OF NEW FE-CR-MN DEVELOPED STEEL

Nowadays, Ni-free austenitic stainless steels are being developed rapidly and high price of nickel is one of the most important motivations for this development. At present research a new FeCrMn steel was designed and produced based on Fe-Cr-Mn-C system. Comparative studies on microstructure and high temperature mechanical properties of  new steel and AISI 316 steel were done. The results ...

متن کامل

Prediction of Mechanical Properties of TWIP Steels using Artificial Neural Network Modeling

In recent years, great attention has been paid to the development of high manganese austenitic TWIP steels exhibiting high tensile strength and exceptional total elongation. Due to low stacking fault energy (SFE), cross slip becomes more difficult in these steels and mechanical twinning is then the favored deformation mode besides dislocation gliding. Chemical composition along with processing ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018